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SUMMARY 
An adaptive finite element scheme for transient problems is presented. The classic h-enrichment/coarsening 
is employed in conjunction with a tetrahedral finite element discretization in three dimensions. A mesh 
change is performed every n time steps, depending on the Courant number employed and the number of 
‘protective layers’ added ahead of the refined region. In order to simplify the refinement/coarsening logic and 
to be as fast as possible, only one level of refinement/coarsening is allowed per mesh change. A high degree of 
vectorizability has been achieved by pre-sorting the elements and then performing the refinement/coarsening 
groupwise according to the case at hand. Further reductions in CPU requirements are realized by 
optimizing the identification and sorting of elements for refinement and deletion. The developed technology 
has been used extensively for shock-shock and shock-object interaction runs in a production mode. A 
typical example of this class of problems is given. 
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1. INTRODUCTION 

The solution of large-scale transient problems around complex geometries is a problem common 
to many fields of computational fluid dynamics. In the present case we desire to simulate 
efficiently shock-shock and shock-structure interactions for realistic, complex, three-dimen- 
sional, engineering-type geometries. Therefore from the onset we used unstructured grids.’ At the 
same time we developed monotonicity-preserving schemes that operate on unstructured grids.2. 
With these schemes, moving and standing shocks are captured within two or three grid points 
without the over- and undershoots that appear in ordinary linear schemes. Besides their ability to 
discretize accurately complex geometries, a second very attractive feature of unstructured grids is 
the ease with which adaptive refinement can be incorporated into them. The addition of further 
degrees of freedom does not destroy any previous structure. Thus the flow solver requires no 
further modification when operating on an adapted grid. For many practical problems the 
regions that need to be refined are extremely small as compared to the overall domain. Therefore 
the savings in storage and CPU requirements typically range between 10 and 100 as compared to 
an overall fine mesh?. Our experience in 2D,5*6 as well as that of other researchers working in 
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this are%’-’ indicates that for the majority of the daily production-type runs, adaptive refine- 
ment makes the difference between being or not being able to run the problems to an acceptable 
accuracy in a reasonable time. Without it we would be forced to use much coarser grids, with 
lower accuracy for the same expense. The present paper extends to 3D the capabilities developed 
in 2D several years Though conceptually the same, this extension to 3D required the advent 
of powerful graphics workstations for effective debugging as well as access to a large-memory 
supercomputer for testing and optimization. 

Any adaptive refinement scheme is composed of three main ingredients. These are 

(1) an optimal mesh criterion 
(2) an error indicator 
(3) a method to refine and coarsen the mesh. 

They give answers to the questions 

(1) how should the optimal mesh be? 
(2) where is refinement/coarsening required? 
(3) how should the refinement/coarsening be accomplished? 

Many variants of each of these subtopics have been explored and shown to be useful for a 
certain class of  problem^.^-'^ Here we seek a method that is efficient and reliable for transient 
compressible flow problems, where a mesh change may be required every 5-10 time steps. This 
leads to the following design criteria for the error indicator. 

(a) the error indicator should be fast. 
(b) The error indicator should be dimensionless so that several ‘key variables’ can be moni- 

(c) The error indicator should be bounded so that no further user intervention becomes 

(d) The error indicator should not only mark the regions with strong shocks to be refined, but 

For the refinement method the design criteria are as follows. 

(e) The method should be conservative, i.e. a mesh change should not result in the production 
or loss of mass, momentum or energy. 

(f) The method should have a minimal amount of numerical dissipation since many mesh 
changes are required during the course of one simulation. 

(g) The method should not produce elements that are too small since this would reduce too 
severely the allowable time step of the explicit flow solvers employed. 

(h) The method shoula be fast; in particular it should lend itself to a high degree of parallelism. 
(i) The method should not involve a major storage overhead. 

tored at the same time. 

necessary as the solution evolves. 

also weak shocks, contact discontinuities and other ‘weak features’ in the flow. 

2. THE ERROR INDICATOR 

An error indicator that meets the design criteria (a)-(d) was proposed in Reference 4. In general 
terms it is of the form 

h2 I second derivatives] 
hl first derivatives 1 + EJ mean valuer. 

error = 

By dividing the second derivatives by the absolute value of the first derivatives, the error indicator 
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becomes bounded and dimensionless and the 'eating-up' effect of strong shocks is avoided. The 
terms following E are added as a 'noise' filter in order not to refine 'wiggles' or 'ripples' which may 
appear owing to loss of monotonicity. The value for E thus depends on the algorithm chosen to 
solve the PDEs describing the physical process at hand. The multidimensional form of this error 
indicator is given by 

where N' denotes the shape function of node I. This error indicator has performed very well in 2D 
over the However, when first used in 3D, it proved unreliable. The source for this 
seemingly inconsistent behaviour was found to stem from the large local variations in element size 
and shape as well as the number of elements surrounding a point encountered in typical 3D 
unstructured grids. These will produce large variations in the second term in the denominator 
which are not based on physics but on the mesh structure itself. The solution was to modify this 
error indicator as follows: 

where MM, is the lumped mass matrix at point I and h, is the average element length at point I. 
This error indicator proved to be remarkably insensitive to local variations in element size and 
shape while still yielding the correct indicator values for physical phenomena of interest. We 
attribute this good performance to the smoothing effects of two averaging operations working 
simultaneously: the lumped mass matrix and the point lengths. 

After having determined the values of the error indicators in the elements, all elements lying 
above a preset threshold value CTORE are refined while all elements lying below a preset 
threshold value CTODE are coarsened. Protective layers of elements are added to surround the 
elements to be refined, so that the 'feature' (e.g. a shock) always travels into an already refined 
region. The number of protective layers that are added depends on the Courant number 
employed and the number of time steps taken between grid modifications. Usually the refinement 
is performed every 5-10 time steps, so that for a Courant number C=0-2-0*4, zero to two 
protective layers are sufficient. 

3. ADAPTIVE REFINEMENT METHOD 

Our previous experience indicates that the only two refinement methods that are truly general 
and efficient for the class of problems considered here are h-refinement4-" and remeshing.' - I 4  

However, for strongly unsteady problems, where a new grid is required every 5-10 timesteps, local 
h-refinement seems to be preferable. Several reasons can be given for this choice. 

(a) Conservation presents no problem for h-refinement. 
(b) No interpolations other than the ones naturally given by the element shape functions are 

required. Therefore no numerical diffusion is introduced by the adaptive refinement 
procedure. This is in contrast to adaptive remeshing, where the grids before and after a 
mesh change may not have the same points in common. The required interpolations of the 
unknowns will result in an increased amount of numerical diffusion. 
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(c) H-refinement is very well suited to vector and parallel processors. This is of particular 
importance in the present context, where a mesh change is performed every 5-10 timesteps 
and a large percentage of mesh points are affected in each mesh change. 

(d) H-refinement is more robust than remeshing. The number of things that can go wrong 
seems to be much less than when remeshing. 

As described above, we limit the number of refinement/coarsening levels per mesh change to 
one. Moreover, we only allow refinement of a tetrahedron into two (along a side), four (along a 
face) or eight new tetrahedra. We call these tetrahedra 1 : 2 , l :  4 and 1 : 8 tetrahedra or refinement 
cases respectively. At the same time a 1 : 2 or 1 : 4 tetrahedron can only be refined further to a 1 : 4 
tetrahedron, or by first going back to a 1 : 8 tetrahedron with subsequent further refinement of the 
8 subelements. We call these the 2 : 4,2 : 8 + and 4 : 8 + refinement cases. The refinement cases are 
summarized in Figure 1. This restrictive set of refinement rules is necessary to avoid the 
appearance of ill-deformed elements. At the same time it considerably simplifies the refinement/ 
coarsening logic. An interesting phenomenon that does not appear in 2D is the apparently free 
choice of the inner diagonal for the 1 : 8 refinement case. As shown in Figure 2, we can place the 
inner four elements around the inner diagonals 5-10,6-8, or 7-9. In the present case the shortest 
inner diagonal was chosen. This choice produces the smallest number of distorted tetrahedra in 
the refined grid. When coarsening, we again only allow a limited number of cases that are 
compatible with the refinement. Thus the coarsening cases become 8 : 4,8 : 2, 8 : 1,4 : 2,4 : 1 and 
2 : 1. These coarsening cases are summarized in Figure 3. 

When constructing the algorithm to refine or coarsen the grid, one faces the usual decision of 
speed versus storage. The more information from the previous grid that is stored, the faster the 
new grid may be constructed. Because storage requirement minimization was one of the goals of 
the present research, we tried to keep only the essential information needed between mesh 
changes without sacrificing an excessive amount of CPU time. This was accomplished by a 
modified tree structure which requires 12 integer locations per element in order to identify the 
‘parent’ and ‘son’ elements of any element as well as the element type. 

The first seven integers store the new elements (‘sons’) of an element that has been subdivided 
into eight (1 : 8). For the 1 : 4 and 1 : 2 cases the sons are also stored in this allocated space and the 
remaining integer locations are set to zero. 

In the eighth integer the element from which the present element originated (the ‘parent’ 
element) is stored. 

The ninth integer denotes the position number in the parent element that this element came 
from. 

The 10th integer denotes the element type. We can either have parents or sons of 1 : 8,1:4 or 
1 : 2 tetrahedra. We mark these by a positive value of the element type for the parents and a 
negative value for the sons. Thus, for example, the son of a 1 : 8 element would be marked as - 8. 

Finally, in the 11th and 12th integer locations the local and global refinement levels are 
remembered. 

These 12 integer locations per element are sutficient to construct further refinements or to 
reconstruct the original grid. It is clear that in these 12 integers a certain degree of redundancy is 
present. For example, the information stored in the 10th integer could be recovered from the data 
stored in locations 1 : 8 and 11 : 12. However, this would require a number of non-vectorizable 
loops with many IF tests. Therefore it was decided to store this value at the time of creation of new 
elements instead of recomputing it at a later time. Similarly, the 11th integer can be recovered 
from the information stored in locations 1 : 8 and 12. As is the case with the 10th integer, storage 
was traded for CPU time. 
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Figure 2. Possible choices for the inner diagonals 

4. ALGORITHMIC IMPLEMENTATION 

Having outlined the basic refinement/coarsening strategy, we can now describe in more depth its 
algorithmic implementation. One complete grid change requires algorithmically the following 
five steps. 

1. 

2. 

Construction of the missing grid information needed for a mesh change (basically the sides 
of the mesh and the sides adjoining each element). 
Identification of the elements to be refined. 

3. Identification of the elements to be deleted. 
4. Refinement of the grid where needed. 
5. Coarsening of the grid where needed. 

4.1. Construction of missing grid information 

The missing information consists of the sides of the mesh and the sides belonging to each 
element. The sides are dynamically stored in two arrays, one containing the two points each side 
connects and the other (a pointer array) containing the lowest side number reaching out of a 
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Figure 3. De-refinement cases 

point. The formation of these two arrays is accomplished in three main loops over the elements, 
which are partially vectorizable. After having formed these two side arrays, a further loop over 
the elements is performed, identifying which sides belong to each element. 

4.2. Identijication of elements to be refined 

The aim of this substep is to determine on which sides further grid points need to be introduced 
so that the resulting refinement patterns on an element level belong to the allowed cases listed 
above, thus producing a compatible, valid new mesh. Five main steps are necessary to achieve this 
goal. 

(a) Mark elements that require reJnement. Using the modified error indicator given by equa- 
tion (3) and the prescribed refinement tolerance CTORE, those elements that require further 
refinement are marked. In FORTRAN this may be achieved by having an array over the elements 
LELEM (1 : NELEM) which is marked as follows: LELEM (IE) =1  *element is to be refined; 
LELEM (IE) =O*element is not to be refined. 

(b) Add protective layers of elements to be rejned. If protective layers of elements are to be 
added ahead of the feature to be refined, we perform for each additional layer the following set of 
operations. 
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(i) Zero an integer point array (e.g. LPOlN (1; NPOIN) =O). 
(ii) Loop over the elements to be refined, marking (e.g. LPOl N (I P) = 1 ) all points connected to 

these elements. 
(iii) Zero the integer element array (e.g. LELEM(1; NELEM) =O). 
(iv) Loop over all elements; if at least one point of a given element has been marked, refine this 

element (e.g. LELEM (IE) = 1). 

(c) Avoid elements that become too small or that have been refined too often. A sharp feature in 
the flow domain, e.g. a shock, will tend to produce error indicator values that always lie above the 
refinement tolerance CTORE. As a consequence, elements close to such a feature will be refined 
every time the mesh is adapted. In order to avoid this ‘refinement ad infinitum’, one has to impose 
either a maximum permissible number of refinement levels per element or a minimum allowable 
element size. Given these constraints, those elements which are already too small (if a minimum 
allowed element size has been given) or have already been refined too many times (if a maximum 
allowed number of refinement levels has been prescribed) are deleted from the list of elements to 
be refined. 

(6) Obtain preliminary list of sides for new points. Given the side/element information obtained 
in substep 4.1, we can now determine a first set of sides on which new grid points need to be 
introduced. This set of sides is still preliminary since we only allow certain types of refinement. 

(e) Add further sides to this list until an admissible refinement pattern is achieved. The list of sides 
marked for the introduction of new points is still preliminary at this point. In most cases it will not 
lead to an admissible refinement pattern to construct a new mesh. Therefore further sides are 
marked for the introduction of new points until an admissible refinement pattern is reached. This 
is accomplished by looping several times over the elements, checking on an element level whether 
the set of sides marked can lead to an admissible new set of subelements. The algorithm used is 
based on the observation that the admissible cases are based on the introduction of new points 
along one side (1 : 2), three contiguous sides (1 : 4) or six contiguous sides (1 : 8). These admissible 
cases can be obtained from the following element-by-element algorithm (see Figure 4). 

(i) Set the node array LNODE(1 : 4) =O. 
(ii) Loop over the sides of the element: if the side has been marked for the introduction of a 

new point, set LNODE(IP1)=1 and LNODE(IP2)=1, where IP1 and IP2 are the 
endnodes corresponding to this side. 

(iii) Loop over the sides of the element: if LNODE(IP1) = 1 and LNODE(IP2) =1, mark the 
side marked for the introduction of a new point. 

Practical calculations with several admissible layers of refinement and large grids revealed that 
sometimes up to 15 passes over the mesh were required to obtain an admissible set of sides. This 
relatively high number of passes can occur when the mesh exhibits regions where the refinement 
criterion is just met by the elements. Then the list of sides originally marked for refinement will be 
far from an admissible one. In each pass over the mesh a further ‘layer’ of elements with 
admissible sides marked for refinement will be added. Moreover, since an element can be refined 
is six possible ways, in some cases it may take three passes to go from a 1 : 2 to a 1 : 8 case. Thus the 
‘front’ of elements with an admissible set of sides marked for refinement may advance slowly, 
resulting in many passes over the mesh. A considerable reduction in CPU time was achieved by 
pre-sorting the elements as follows. 
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max 

rnax 

a)  From Sldes t o  P o l n t s  

b) From P o i n t s  t o  Sldes 

Figure 4. Algorithm to screen for admissible refinement cases 

(i) Add up all the sides marked for refinement in an element. 
(ii) If zero, one or six sides were marked: do not consider further. 
(iii) If four or five sides were marked: mark all sides of this element to be refined. 
(iv) If two or three sides were marked analyse in depth as described above, 

This then yields the final set of sides on which new grid points are introduced. 

4.3. Identijication of elements to be deleted 

The aim of this substep is to determine which points are to be deleted so that the resulting 
coarsening patterns on an element level belong to the allowed cases listed above, thus producing a 
compatible, valid new mesh. Four main steps are necessary to achieve this goal. 

(a) Mark elements to be deleted. As before, we start by determining-using the modified error 
indicator given by equation (3) and the prescribed deletion tolerance CTO D E-those elements 
that should be coarsened. Thus we mark an element array LELEM (1 : NELEM) as follows: 
LELEM(IE)= - 1  *element is to be deleted; LELEM(IE)=O* element is not to be deleted. 

(b) Filter out elements where father and all sons are to be deleted. It is clear that only those 
elements should be deleted for which both the father as well as all its sons have been marked for 
deletion. Therefore only the parent elements to be coarsened are considered further. For these 
elements a check is performed whether their respective son elements have also been marked for 
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deletion. If any of the sons have not been marked for deletion, neither the parent element nor any 
of its sons are considered further. 

(c) Obtain preliminary list of points to be deleted. Given the list of parent elements to be 
coarsened, we can now determine a preliminary list of points to be deleted. Thus all the points 
that would be deleted if all the elements contained in this list were coarsened are marked as ‘total 
deletion points’. 

(d) Delete pointsfrom this list until an admissible coarsening pattern is achieved. The list of total 
deletion points obtained in the previous step is only preliminary, since unallowed coarsening 
cases may appear on an element level. We therefore perform loops over the elements, deleting all 
those total deletion points which would result in unallowed coarsening cases for the elements 
adjoining them. This process is stopped when no incompatible total deletion points are left. As 
before, this process may be made considerably faster by grouping together and treating differently 
the parent elements with zero, one, two, three, four, five or six total deletion points. 

4.4 Rejinement of the grid where needed 

in principle could be performed in parallel. 
The introduction of further points and elements is performed in two independent steps, which 

(a) Points. To add further points, the sides marked for refinement in substep 4.2 are grouped 
together. For each of these sides a new gridpoint will be introduced. The icterpolation of the co- 
ordinates and unknowns is then performed using the side/point information obtained in substep 
4.1. These new co-ordinates and unknowns are added to their respective arrays. In the same way 
new boundary conditions are introduced where required, and the location of new boundary 
points is adjusted using the CADCAM data defining the computational domain. 

(b) Elements. In order to add further elements, the sides marked for refinement are labelled 
with their new grid point number. Thereafter the element/side information obtained in substep 4.1 
above is employed to add the new elements. The elements to be refined are grouped together 
according to the refinement cases shown in Figure 1. Each case is treated in block fashion in a 
separate subroutine. Perhaps the major breakthrough of the present work was the reduction of 
the many possible refinement cases to only six. In order to accomplish this, some information for 
the 2:8+ and 4:8+ cases is stored ahead in scratch arrays. After these elements have been 
refined according to the 2 : 8 and 4 : 8 cases, their sons are screened for further refinement using 
this information. All sons that require further refinement are then grouped together as 1 : 2 or 1 : 4 
cases and processed in turn. 

Since the original description of all variables was performed using linear elements, the linear 
interpolation of the unknowns to the new points will be conservative. However, small conserva- 
tion losses will occur at curved surfaces. We consider these losses to be both unavoidable and 
small. 

4.5. Coarsening of the grid where needed 

principle could be performed in parallel. 
The deletion of points and elements is again performed in two independent steps, which in 



Plate 1 (a - c) 



Plate 1 (d - f )  
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(a) Points. The points to be deleted having been marked in substep 4.3 above, all that remains 
to be done is to fill up the voids in the co-ordinate, unknown and boundary condition arrays by 
renumbering points and boundary conditions. 

(b) Elements. The deletion of elements is again performed blockwise by grouping together all 
elements corresponding to the coarsening cases shown in Figure 3. Thereafter the elements are 
also renumbered (in order to fill up the gaps left by the deleted elements) and the point 
renumbering is taken into consideration within the connectivity arrays. 

It is clear that the coarsening procedure is non-conservative. However, we have never observed 
any physical or numerical problems using it. This may be explained by the fact that the 
coarsening is done in those regions where the solution is smooth. Thus the coarsened grid 
represents the solution very well and consequently the conservation losses are small. Moreover, 
those regions where the maintenance of conservation is important (e.g. discontinuities) are never 
affected. 

5. NUMERICAL EXAMPLE 

We demonstrate the performance of the method on a typical production run. The example 
simulates shock impact on a generic tank. Although some comparison with experimental data has 
been done,5 the aim here is to demonstrate the developed adaptive refinement/coarsening 
algorithm. As the basic hydrodynamics solver we employ the FEM-FCT code of Lohner et ~ l . , ~ .  
which is capable of reproducing moving and stationary shocks over two elements without loss of 
monotonicity. For this class of problems and the algorithm employed it was found that the 
following choice of refinement/coarsening parameters produced acceptable results: 

(i) refinement tolerance: CTO R E = 0.1 5 
(ii) coarsening tolerance: CTO D E = 0.07 
(iii) noise parameter: E = 030 
(iv) key variable: density. 

Other relevant parameters that were found useful for production runs such as the one shown 
include: 

(i) refinement frequency: every seven time steps 
(ii) number of protective layers: none 
(iii) Courant number of the hydro-solver: C =04. 

We have found these parameters to be useful not only for the present run but for a whole class of 
similar runs involving shock-object interactions. Thus they seem to be rather general in their 
applicability. A similar behaviour was observed previously in 2D.4-6 

5.1. Shock impact on a generic tank 

The problem statement as well as the solutions obtained are shown in Plate 1. A very strong 
shock impacts the rear of the generic main battlefield tank. A maximum of two layers of 
refinement were specified close to the tank, whereas only one level of refinement was employed 
further away. The original, unrefined, but strongly graded mesh consisted of approximately 
NELEM=100,000 elements and NPOlN=20,000 points. During the run the mesh size in- 
creased to approximately N ELEM = 1,600,000 elements and N POI N = 280,000 points. This 
represents an increase factor of 1 : 16. Although seemingly high, the corresponding global h- 
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refinement would have resulted in a 1 : 64 size increase. A second important factor is that most of 
the elements of the original mesh are close to the body, where most of the refinement is going to 
take place. Plates l(a)-l(f) show surface gridding and pressure contours at selected times during 
the run. The extent of mesh refinement is clearly discernible, as well as the location and interaction 
of shocks. 

A complete run such as the one shown here takes approximately 35 h of single-processor 
CRAY-YMP time and 110 Mwords of memory. Given that it takes 3-5 days to grid up a 
configuration such as the one shown and another 3-5 days to plot and understand the data, these 
CPU and memory requirements are not deemed excessive. Moreover, given the DO loop lengths 
encountered in a run like the one shown, microtasking works very well. On an eight-processor 
CRAY-YMP, speed-ups in excess of 1 : 6 have been obtained. This reduces run times to 6 h, i.e. an 
overnight run. From these figures it also becomes apparent that without the adaptive mesh 
refinement/coarsening scheme developed, a run like this would be impossible on today’s hard- 
ware. 

6. CONCLUSIONS 

An adaptive finite element scheme for transient problems has been presented. The classic h- 
enrichment/coarsening is employed in conjunction with a tetrahedral finite element discretization 
in three dimensions. The grid is adapted every n time steps, depending on the Courant number 
employed and the number of ‘protective layers’ added ahead of the refined region. Particular 
emphasis was placed on speed and low storage requirements from the outset. Therefore only one 
level of refinement/coarsening was allowed per mesh change and the number of possible 
refinement/coarsening patterns was reduced. This avoided badly deformed elements and simpli- 
fied the grid logic considerably without loss of generality. It has been demonstrated that with 
these restrictions in mind a high degree of vectorizability can be achieved on modem super- 
computers. 

A numerical example taken from practical shock-shock and shock-structure interaction 
problems indicates that with the present approach, saving factors in both CPU and storage 
requirements of more than an order of magnitude as compared to uniform refinement are 
attainable without deteriorating the accuracy of the solutions. 
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